Set instruksi (instruction set) adalah sekumpulan lengkap
instruksi yang dapat di mengerti oleh sebuah CPU, set instruksi sering juga
disebut sebagai bahasa mesin (machine code), karna aslinya juga berbentuk biner
kemudian dimengerti sebagai bahasa assembly, untuk konsumsi manusia
(programmer), biasanya digunakan representasi yang lebih mudah dimengerti oleh
manusia.
Sebuah instruksi terdiri dari sebuah opcode, biasanya bersama
dengan beberapa informasi tambahan seperti darimana asal operand-operand dan
kemana hasil-hasil akan ditempatkan. Subyek umum untuk menspesifikasikan di
mana operand-operand berada (yaitu, alamat-alamatnya) disebut pengalamatan
Pada beberapa mesin, semua instruksi memiliki panjang yang sama,
pada mesin-mesin yang lain mungkin terdapat banyak panjang berbeda.
Instruksi-instruksi mungkin lebih pendek dari, memiliki panjang yang sama
seperti, atau lebih panjang dari panjang word. Membuat semua instruksi memiliki
panjang yang sama lebih muda dilakukan dan membuat pengkodean lebih mudah
tetapi sering memboroskan ruang, karena semua instruksi dengan demikian harus
sama panjang seperti instruksi yang paling panjang.
Di dalam sebuah instruksi terdapat beberapa elemen-elemen
instruksi:
1.
Operation code (op code)
2.
Source operand reference
3.
Result operand reference
4.
Xext instruction
preference
Format instruksi (biner):
Misalkan instruksi dengan 2 alamat operand : ADD A,B A
dan B adalah suatu alamat register.
Beberapa simbolik
instruksi:
ADD :
Add (jumlahkan)
SUB :
Subtract (Kurangkan)
MPY/MUL :
Multiply (Kalikan)
DIV :
Divide (Bagi)
LOAD :
Load data dari register/memory
STOR :
Simpan data ke register/memory
MOVE :
pindahkan data dari satu tempat ke tempat lain
SHR :
shift kanan data
SHL :
shift kiri data .dan lain-lain
Cakupan jenis instruksi:
Data
processing :
Aritmetik (ADD, SUB, dsb); Logic (AND, OR, NOT, SHR,
dsb); konversidata
Data storage
(memory) : Transfer data (STOR, LOAD, MOVE, dsb)
Data
movement :
Input dan Output ke modul I/O
Program flow
control : JUMP, HALT, dsb.
Bentuk instruksi:
– Format
instruksi 3 alamat
Mempunyai bentuk umum
seperti : [OPCODE][AH],[AO1],[AO2]. Terdiri dari satu alamt hasil, dan dua
alamat operand, misal SUB Y,A,B Yang mempunyai arti dalam bentuk algoritmik : Y
:= A – B dan arti dalam bentuk penjelasan : kurangkan isi reg a dengan isi reg
B, kemudian simpan hasilnya di reg Y. bentuk bentuk pada format ini tidak umum
digunakan di dalam computer, tetapi tidak dimungkinkan ada pengunaanya, dalam
peongoprasianya banyak register sekaligus dan program lebih pendek.
Contoh:
A, B, C, D, E, T, Y adalah register
Program: Y = (A – B) / ( C + D × E)
SUB Y, A, B Y := A – B
MPY T, D, E T := D × E
ADD T, T, C T := T + C
DIV Y, Y, T Y:= Y / T
Memerlukan 4 operasi
A, B, C, D, E, T, Y adalah register
Program: Y = (A – B) / ( C + D × E)
SUB Y, A, B Y := A – B
MPY T, D, E T := D × E
ADD T, T, C T := T + C
DIV Y, Y, T Y:= Y / T
Memerlukan 4 operasi
– Format
instruksi 2 alamat
Mempunyai bentuk umum :
[OPCODE][AH],[AO]. Terdiri dari satu alamat hasil merangkap operand, satu
alamat operand, missal : SUB Y,B yang mempunyai arti dalam algoritmik : Y:= Y –
B dan arti dalam bentuk penjelasan : kurangkan isi reg Y dengan isi reg B,
kemudian simpan hasillnya di reg Y. bentuk bentuk format ini masih digunakan di
computer sekarang, untuk mengoprasikan lebih sedikit register, tapi panjang
program tidak bertambah terlalu banyak.
Contoh :
A, B, C, D, E, T, Y adalah register
Program: Y = (A – B) / ( C + D × E)
MOVE Y, A Y := A
SUB Y, B Y := Y – B
MOVE T, D T := D
MPY T, E T := T × E
ADD T, C T := T + C
DIV Y, T Y:= Y / T
Memerlukan 6 operasi
A, B, C, D, E, T, Y adalah register
Program: Y = (A – B) / ( C + D × E)
MOVE Y, A Y := A
SUB Y, B Y := Y – B
MOVE T, D T := D
MPY T, E T := T × E
ADD T, C T := T + C
DIV Y, T Y:= Y / T
Memerlukan 6 operasi
– Format
instruksi 1 alamat
Mempunyai bentuk umum : [OPCODE][AO]. Terdiri dari satu alamat
operand, hasil disimpan di accumulator, missal : SUB B yang mempunyai arti
dalam algoritmik : AC:= AC – B dan arti dalam bentuk penjelasan : kurangkan isi
Acc dengan isi reg B, kemudian simpan hasillnya di reg Acc. bentuk bentuk
format ini masih digunakan di computer jaman dahulu, untuk mengoprasikan di
perlukan satu register, tapi panjang program semakin bertambah.
Contoh :
A, B, C, D, E, Y adalah register
Program: Y = (A – B) / ( C + D × E)
LOAD D AC := D
MPY E AC := AC × E
ADD C AC := AC + C
STOR Y Y := AC
LOAD A AC := A
SUB B AC := AC – B
DIV Y AC := AC / Y
STOR Y Y := AC
Memerlukan 8 operasi
A, B, C, D, E, Y adalah register
Program: Y = (A – B) / ( C + D × E)
LOAD D AC := D
MPY E AC := AC × E
ADD C AC := AC + C
STOR Y Y := AC
LOAD A AC := A
SUB B AC := AC – B
DIV Y AC := AC / Y
STOR Y Y := AC
Memerlukan 8 operasi
– Format instruksi 0 alamat
Mempunyai bentuk umum : [OPCODE]. Terdiri dari semua alamat operand implicit, disimpan dalam bentuk stack. Operasi yang biasanya membutuhkan 2 operand, akan mengambil isi stack paling atas dan dibawahnya missal : SUB yang mempunyai arti dalam algoritmik : S[top]:=S[top-1]-S[top] dan arti dalam bentuk penjelasan : kurangkan isi stack no2 dari atas dengan isi stack paling atas, kemudian simpan hasilnya di stack paling atas, untuk mengoprasikan ada beberapa instruksi khusus stack PUSH dan POP.
Mempunyai bentuk umum : [OPCODE]. Terdiri dari semua alamat operand implicit, disimpan dalam bentuk stack. Operasi yang biasanya membutuhkan 2 operand, akan mengambil isi stack paling atas dan dibawahnya missal : SUB yang mempunyai arti dalam algoritmik : S[top]:=S[top-1]-S[top] dan arti dalam bentuk penjelasan : kurangkan isi stack no2 dari atas dengan isi stack paling atas, kemudian simpan hasilnya di stack paling atas, untuk mengoprasikan ada beberapa instruksi khusus stack PUSH dan POP.
Contoh :
A, B, C, D, E, Y adalah register
Program: Y = (A – B) / ( C + D × E)
PUSH A S[top] := A
PUSH B S[top] := B
SUB S[top] := A – B
PUSH C S[top] := C
PUSH D S[top] := D
PUSH E S[top] := E
MPY S[top] := D × E
ADD S[top] := C + S[top]
DIV S[top] := (A – B) /S[top]
POP Y Out := S[top]
Memerlukan 10 operasi
A, B, C, D, E, Y adalah register
Program: Y = (A – B) / ( C + D × E)
PUSH A S[top] := A
PUSH B S[top] := B
SUB S[top] := A – B
PUSH C S[top] := C
PUSH D S[top] := D
PUSH E S[top] := E
MPY S[top] := D × E
ADD S[top] := C + S[top]
DIV S[top] := (A – B) /S[top]
POP Y Out := S[top]
Memerlukan 10 operasi
Set instruksi pada CISC:
Berikut ini merupakan
karakteristik set instruksi yang digunakan pada beberapa computer yang memiliki
arsitektur CISC
Perbandingan set instruksi
Beberapa computer CISC (Complex Instruction Set Computer)
menggunakan cara implist dalam menentukan mode addressing pada setiap set
instruksinya. Penentuan mode addressing dengan cara implicit memiliki arti
bahwa pada set instruksi tidak di ada bagian yang menyatakan tipe dari mode
addressing yang digunakan, deklarasi dari mode addressing itu berada menyatu
dengan opcode. Lain hal nya dengan cara imsplisit, cara eksplisit sengaja
menyediakan tempat pada set instruksi untuk mendeklarasikan tipe mode
addressing. Pada cara eksplisit deklarasi opcode dan mode addressing berada
terpisah.
Data pada tempat deklarasi mode addressing diperoleh dari
logaritma basis dua jumlah mode addressing. Jika deklarasi mode addressing
dilakukan secara implicit akan menghemat tempat dalam set instruksi paling
tidak satu bit untuk IBM 3090 dan 6 bit untuk MC68040. Perubahan satu bit pada
set instruksi akan memberikan jangkauan alamat memori lebih luas mengingat
range memori dinyatakan oleh bilangan berpangkat dua.
ELEMEN-ELEMEN DARI INSTRUKSI
MESIN (SET INSTRUKSI)
* Operation Code (opcode)
: menentukan operasi yang akan dilaksanakan
* Source Operand
Reference : merupakan input bagi operasi yang akan dilaksanakan
* Result Operand
Reference : merupakan hasil dari operasi yang dilaksanakan
* Next instruction
Reference : memberitahu CPU untuk mengambil (fetch) instruksi berikutnya
setelah instruksi yang dijalankan selesai. Source dan result operands dapat
berupa salah satu diantara tiga jenis berikut ini:
§
Main or Virtual Memory
§
CPU Register
§
I/O Device
DESAIN SET INSTRUKSI
Desain set instruksi
merupakan masalah yang sangat komplek yang melibatkan banyak aspek, diantaranya
adalah:
1.
Kelengkapan set instruksi
2.
Ortogonalitas (sifat
independensi instruksi)
3.
Kompatibilitas : – Source
code compatibility – Object code Compatibility
Selain ketiga aspek
tersebut juga melibatkan hal-hal sebagai berikut:
1.
Operation Repertoire:
Berapa banyak dan operasi apa saja yang disediakan, dan berapa sulit operasinya
2.
Data Types: tipe/jenis
data yang dapat olah Instruction Format: panjangnya, banyaknya alamat, dsb.
3.
Register: Banyaknya
register yang dapat digunakan 4.Addressing: Mode pengalamatan untuk operand
FORMAT INSTRUKSI
* Suatu instruksi terdiri
dari beberapa field yang sesuai dengan elemen dalam instruksi tersebut. Layout
dari suatu instruksi sering disebut sebagai Format Instruksi (Instruction
Format).
OPCODE OPERAND REFERENCE
OPERAND REFERENCE JENIS-JENIS OPERAND
* Addresses (akan dibahas
pada addressing modes)
* Numbers : – Integer or fixed point – Floating point – Decimal (BCD)
* Characters : – ASCII – EBCDIC
* Logical Data : Bila data berbentuk binary: 0 dan 1
* Numbers : – Integer or fixed point – Floating point – Decimal (BCD)
* Characters : – ASCII – EBCDIC
* Logical Data : Bila data berbentuk binary: 0 dan 1
JENIS INSTRUKSI
* Data processing:
Arithmetic dan Logic Instructions
* Data storage: Memory instructions
* Data Movement: I/O instructions
* Control: Test and branch instructions
* Data storage: Memory instructions
* Data Movement: I/O instructions
* Control: Test and branch instructions
TRANSFER DATA
* Menetapkan lokasi
operand sumber dan operand tujuan.
* Lokasi-lokasi tersebut dapat berupa memori, register atau bagian paling atas daripada stack.
* Menetapkan panjang data yang dipindahkan.
* Menetapkan mode pengalamatan.
* Tindakan CPU untuk melakukan transfer data adalah :
* Lokasi-lokasi tersebut dapat berupa memori, register atau bagian paling atas daripada stack.
* Menetapkan panjang data yang dipindahkan.
* Menetapkan mode pengalamatan.
* Tindakan CPU untuk melakukan transfer data adalah :
a. Memindahkan data dari
satu lokasi ke lokasi lain.
b. Apabila memori dilibatkan :
b. Apabila memori dilibatkan :
1. Menetapkan alamat
memori.
2. Menjalankan transformasi alamat memori virtual ke alamat memori aktual.
3. Mengawali pembacaan / penulisan memori
2. Menjalankan transformasi alamat memori virtual ke alamat memori aktual.
3. Mengawali pembacaan / penulisan memori
Operasi set instruksi
untuk transfer data :
* MOVE : memindahkan word atau blok dari sumber ke tujuan
* STORE : memindahkan word dari prosesor ke memori.
* LOAD : memindahkan word dari memori ke prosesor.
* EXCHANGE : menukar isi sumber ke tujuan.
* CLEAR / RESET : memindahkan word 0 ke tujuan.
* SET : memindahkan word 1 ke tujuan.
* PUSH : memindahkan word dari sumber ke bagian paling atas stack.
* POP : memindahkan word dari bagian paling atas sumber
* MOVE : memindahkan word atau blok dari sumber ke tujuan
* STORE : memindahkan word dari prosesor ke memori.
* LOAD : memindahkan word dari memori ke prosesor.
* EXCHANGE : menukar isi sumber ke tujuan.
* CLEAR / RESET : memindahkan word 0 ke tujuan.
* SET : memindahkan word 1 ke tujuan.
* PUSH : memindahkan word dari sumber ke bagian paling atas stack.
* POP : memindahkan word dari bagian paling atas sumber
ARITHMETIC
Tindakan CPU untuk
melakukan operasi arithmetic :
1.
Transfer data sebelum
atau sesudah.
2.
Melakukan fungsi dalam
ALU.
3.
Menset kode-kode kondisi
dan flag.
Operasi set instruksi
untuk arithmetic :
1. ADD : penjumlahan 5. ABSOLUTE
2. SUBTRACT : pengurangan 6. NEGATIVE
3. MULTIPLY : perkalian 7. DECREMENT
4. DIVIDE : pembagian 8. INCREMENT
Nomor 5 sampai 8 merupakan instruksi operand tunggal. LOGICAL
2. SUBTRACT : pengurangan 6. NEGATIVE
3. MULTIPLY : perkalian 7. DECREMENT
4. DIVIDE : pembagian 8. INCREMENT
Nomor 5 sampai 8 merupakan instruksi operand tunggal. LOGICAL
* Tindakan CPU sama
dengan arithmetic
* Operasi set instruksi untuk operasi logical :
* Operasi set instruksi untuk operasi logical :
1. AND, OR, NOT, EXOR
2. COMPARE : melakukan perbandingan logika.
3. TEST : menguji kondisi tertentu.
4. SHIFT : operand menggeser ke kiri atau kanan menyebabkan konstanta pada ujung bit.
5. ROTATE : operand menggeser ke kiri atau ke kanan dengan ujung yang terjalin.
2. COMPARE : melakukan perbandingan logika.
3. TEST : menguji kondisi tertentu.
4. SHIFT : operand menggeser ke kiri atau kanan menyebabkan konstanta pada ujung bit.
5. ROTATE : operand menggeser ke kiri atau ke kanan dengan ujung yang terjalin.
CONVERSI
Tindakan CPU sama dengan
arithmetic dan logical.
* Instruksi yang mengubah format instruksi yang beroperasi terhadap format data.
* Misalnya pengubahan bilangan desimal menjadi bilangan biner.
* Operasi set instruksi untuk conversi :
* Instruksi yang mengubah format instruksi yang beroperasi terhadap format data.
* Misalnya pengubahan bilangan desimal menjadi bilangan biner.
* Operasi set instruksi untuk conversi :
1. TRANSLATE :
menterjemahkan nilai-nilai dalam suatu bagian memori berdasrkan tabel
korespodensi.
2. CONVERT : mengkonversi isi suatu word dari suatu bentuk ke bentuk lainnya.
2. CONVERT : mengkonversi isi suatu word dari suatu bentuk ke bentuk lainnya.
INPUT / OUPUT
* Tindakan CPU untuk
melakukan INPUT /OUTPUT :
1. Apabila memory mapped
I/O maka menentukan alamat memory mapped.
2. Mengawali perintah ke modul I/O
2. Mengawali perintah ke modul I/O
* Operasi set instruksi
Input / Ouput :
1. INPUT : memindahkan
data dari pernagkat I/O tertentu ke tujuan
2. OUTPUT : memindahkan data dari sumber tertentu ke perangkat I/O
3. START I/O : memindahkan instruksi ke prosesor I/O untuk mengawali operasi I/O
4. TEST I/O : memindahkan informasi dari sistem I/O ke tujuan TRANSFER CONTROL
2. OUTPUT : memindahkan data dari sumber tertentu ke perangkat I/O
3. START I/O : memindahkan instruksi ke prosesor I/O untuk mengawali operasi I/O
4. TEST I/O : memindahkan informasi dari sistem I/O ke tujuan TRANSFER CONTROL
* Tindakan CPU untuk
transfer control : Mengupdate program counter untuk subrutin , call / return.
* Operasi set instruksi
untuk transfer control :
1. JUMP (cabang) :
pemindahan tidak bersyarat dan memuat PC dengan alamat tertentu.
2. JUMP BERSYARAT : menguji persyaratan tertentu dan memuat PC dengan alamat tertentu atau tidak melakukan apa tergantung dari persyaratan.
3. JUMP SUBRUTIN : melompat ke alamat tertentu.
4. RETURN : mengganti isi PC dan register lainnya yang berasal dari lokasi tertentu.
5. EXECUTE : mengambil operand dari lokasi tertentu dan mengeksekusi sebagai instruksi
6. SKIP : menambah PC sehingga melompati instruksi berikutnya.
7. SKIP BERSYARAT : melompat atau tidak melakukan apa-apa berdasarkan pada persyaratan
8. HALT : menghentikan eksekusi program.
9. WAIT (HOLD) : melanjutkan eksekusi pada saat persyaratan dipenuhi
10. NO OPERATION : tidak ada operasi yang dilakukan.
2. JUMP BERSYARAT : menguji persyaratan tertentu dan memuat PC dengan alamat tertentu atau tidak melakukan apa tergantung dari persyaratan.
3. JUMP SUBRUTIN : melompat ke alamat tertentu.
4. RETURN : mengganti isi PC dan register lainnya yang berasal dari lokasi tertentu.
5. EXECUTE : mengambil operand dari lokasi tertentu dan mengeksekusi sebagai instruksi
6. SKIP : menambah PC sehingga melompati instruksi berikutnya.
7. SKIP BERSYARAT : melompat atau tidak melakukan apa-apa berdasarkan pada persyaratan
8. HALT : menghentikan eksekusi program.
9. WAIT (HOLD) : melanjutkan eksekusi pada saat persyaratan dipenuhi
10. NO OPERATION : tidak ada operasi yang dilakukan.
CONTROL SYSTEM
* Hanya dapat dieksekusi
ketika prosesor berada dalam keadaan khusus tertentu atau sedang mengeksekusi
suatu program yang berada dalam area khusus, biasanya digunakan dalam sistem
operasi. * Contoh : membaca atau mengubah register kontrol.
JUMLAH ALAMAT (NUMBER OF
ADDRESSES)
* Salah satu cara
tradisional untuk menggambarkan arsitektur prosessor adalah dengan melihat
jumlah alamat yang terkandung dalam setiap instruksinya.
* Jumlah alamat maksimum yang mungkin diperlukan dalam sebuah instruksi :
* Jumlah alamat maksimum yang mungkin diperlukan dalam sebuah instruksi :
1. Empat Alamat ( dua
operand, satu hasil, satu untuk alamat instruksi berikutnya)
2. Tiga Alamat (dua operand, satu hasil)
3. Dua Alamat (satu operand merangkap hasil, satunya lagi operand)
4. Satu Alamat (menggunakan accumulator untuk menyimpan operand dan hasilnya)
2. Tiga Alamat (dua operand, satu hasil)
3. Dua Alamat (satu operand merangkap hasil, satunya lagi operand)
4. Satu Alamat (menggunakan accumulator untuk menyimpan operand dan hasilnya)
Macam-macam instruksi
menurut jumlah operasi yang dispesifikasikan
1. O – Address Instruction
2. 1 – Addreess Instruction.
3. N – Address Instruction
4. M + N – Address Instruction
1. O – Address Instruction
2. 1 – Addreess Instruction.
3. N – Address Instruction
4. M + N – Address Instruction
Macam-macam instruksi
menurut sifat akses terhadap memori atau register
1. Memori To Register Instruction
2. Memori To Memori Instruction
3. Register To Register Instruction
1. Memori To Register Instruction
2. Memori To Memori Instruction
3. Register To Register Instruction
ADDRESSING MODES
Jenis-jenis addressing
modes (Teknik Pengalamatan) yang paling umum:
* Immediate
* Direct
* Indirect
* Register
* Register Indirect
* Displacement
* Stack
* Immediate
* Direct
* Indirect
* Register
* Register Indirect
* Displacement
* Stack
Komentar
Posting Komentar